Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization

نویسنده

  • Xiaodong Li
چکیده

This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighbourhood best values, for solving multimodal optimization problems. In the proposed speciesbased PSO (SPSO), the swarm population is divided into species subpopulations based on their similarity. Each species is grouped around a dominating particle called the species seed. At each iteration step, species seeds are identified from the entire population and then adopted as neighbourhood bests for these individual species groups separately. Species are formed adaptively at each step based on the feedback obtained from the multimodal fitness landscape. Over successive iterations, species are able to simultaneously optimize towards multiple optima, regardless of if they are global or local optima. Our experiments demonstrated that SPSO is very effective in dealing with multimodal optimization functions with lower dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Species Particle Swarm Optimizer for Multimodal Function Optimization

This paper introduces a modified particle swarm optimizer (PSO) called the Multi-Species Particle Swarm Optimizer (MSPSO) for locating all the global minima of multimodal functions. MSPSO extend the original PSO by dividing the particle swarm spatially into a multiple cluster called a species in a multi-dimensional search space. Each species explores a different area of the search space and tri...

متن کامل

Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...

متن کامل

A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization

This paper introduces a modified PSO, Non-dominated Sorting Particle Swarm Optimizer (NSPSO), for better multiobjective optimization. NSPSO extends the basic form of PSO by making a better use of particles’ personal bests and offspring for more effective nondomination comparisons. Instead of a single comparison between a particle’s personal best and its offspring, NSPSO compares all particles’ ...

متن کامل

Stretching technique for obtaining global minimizers through Particle Swarm Optimization

The Particle Swarm Optimizer, like many other evolutionary and classical minimization methods, su ers the problem of occasional convergence to local minima, especially in multimodal and scattered landscapes. In this work we propose a modi cation of the Particle Swarm Optimizer that makes use of a new technique, named Function \Stretching", to alleviate the local minima problem. Function \Stretc...

متن کامل

Comprehensive Learning Particle Swarm Optimizer for Constrained Mixed-Variable Optimization Problems

This paper presents an improved particle swarm optimizer (PSO) for solving multimodal optimization problems with problem-specific constraints and mixed variables. The standard PSO is extended by employing a comprehensive learning strategy, different particle updating approaches, and a feasibility-based rule method. The experiment results show the algorithm located the global optima in all teste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004